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Abstract
We derive the effective permeability and permittivity of a nanostructured
metallic photonic crystal by analysing the complex reflection and transmission
coefficients for slabs of various thicknesses. These quantities were calculated
using the transfer matrix method. Our results indicate that these structures
could be used to realize a negative effective permeability, at least up to infrared
frequencies. The origin of the negative permeability is a resonance due to
the internal inductance and capacitance of the structure. We also present an
analytic model for the effective permeability of the crystal. The model reveals
the importance of the inertial inductance due to the finite mass of the electrons in
the metal. We find that this contribution to the inductance has implications for
the design of metallic magnetic structures in the optical region of the spectrum.
We show that the magnetic activity in the structure is accompanied by the
concentration of the incident field energy into very small volumes within the
structure. This property will allow us to considerably enhance non-linear effects
with minute quantities of material.

1. Introduction

Composite electromagnetic materials can be considered as effectively homogeneous media
when the structure varies spatially on a scale much less than the incident radiation. A set
of effective response functions εe f f and/or µe f f can then be ascribed to these materials. By
microstructuring metallic elements, materials with striking electromagnetic properties which
were previously unattainable have now been tested in the GHz and RF ranges.

For example, a variety of structures have been proposed which are characterized by an
effective permeability of the form

µe f f = 1 − f ω2

ω2 − ω2
0 + i�ω

. (1)
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Here f is the filling fraction in the unit cell of the material and in the absence of losses (� → 0)
the effective permeability diverges at the resonance frequency ω0. Structures composed of
metallic elements which display a magnetic response as above include split-ring resonators
and the so-called Swiss-roll structure [1, 2]. These structures are resonant because of an internal
capacitance and inductance within each element. Note that these structures now provide the
possibility of observing a negative effective permeability over a finite frequency range in the
absence of any intrinsically magnetic material in the structure.

By constraining the electrons to run along thin wires arranged in a three-dimensional
lattice we can create structures with a dielectric dispersion characteristic of a plasma:

εe f f = 1 − ω2
p

ω2
. (2)

The plasma frequency ωp can be reduced into the infrared or microwave region of the spectrum
simply by varying the concentration and thickness of the wires which form the lattice [3]. Once
the frequency is less than the plasma frequency, the effective permittivity is negative.

By combining these thin wire structures with resonant magnetic structures the material can
be tuned such that both the effective permittivity and effective permeability are simultaneously
negative. A so-called left-handed material then results with many novel electromagnetic
properties [4, 5]. For example, at a single frequency where εe f f = µe f f = −1, a parallel-sided
slab of the material will focus all the Fourier components of an image, both radiative and
evanescent. This phenomenon of perfect lensing thus allows for improved near-field imaging
potential [6].

The zeroth-order Mie resonance in dielectric particles represents an alternative to metallic
implementations of the above magnetic response [7]. In that study an array of cylinders of
large dielectric constant was considered and it was found that a negative permeability could be
realized. Low-loss ferroelectric materials make the large dielectric constants possible at the
frequencies considered, a few GHz. While the magnetic response was found to be potentially
large in this instance, such large dielectric constants are not to be found at present at higher
frequencies.

In this paper we demonstrate that a metallic split ring can be used to implement a
magnetic response, including a negative effective permeability, in principle up to infrared
frequencies. The nanostructured crystal that we consider represents an adaptation of the split-
ring configuration for operation at higher frequencies in that we have again incorporated a large
capacitance into the structure, thus allowing a current to flow in the absence of a continuous
conducting path in the xz-plane. Since the structure is essentially a single metallic ring which
has been split symmetrically, it is likely to be more easily fabricated at submicron scales than
the two concentric rings considered in [1]. As for the structures considered previously we
will require that the length scales determined by the unit-cell dimension and the free-space
wavelength at the resonance frequency are well separated. This allows us to sensibly speak of
an effective permeability and permittivity for the crystal.

As was the case with the original split-ring structure [1], we find that the magnetic activity
implies that there are regions in the structure where local field strengths can be many orders
of magnitude larger than in free space. Thus there exists considerable potential for enhancing
non-linear effects.

2. A magnetic nanostructure

The two-dimensional unit cell which we consider is shown in figure 1(b). It consists of a square
silver column which we have structured on a nanometre scale in order to define an internal
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Figure 1. Two-dimensional unit cells of the structures considered. The unit-cell dimension is a in
both cases. (a) A solid silver column with filling fraction b2/a2. (b) The magnetic nanostructure
composed of silver and with the same filling fraction as in (a). The thickness of the metal films
is D. Each capacitance is defined by a separation dc and a length Lc. The results presented here
are for incident waves propagating along the z-direction.

inductance and capacitance, thus forming a resonant structure. The unit cell is also square
with a side length a which we take to be 600 nm. The metallic sheets are of uniform thickness
D while separations dc and lengths Lc define the capacitance in the structure as shown. The
polarization of the incident light which is of interest here is that for which the magnetic field
is oriented parallel to the axis of the column along the y-direction (p polarization).

At the frequencies we consider here, the dielectric response of bulk silver is dominated
by the plasma-like behaviour of the electron gas. It can be described by a complex dielectric
function of the form

ε̃(ω) = (ε1, ε2) = ε∞ − ω2
p

ω(ω + iγ )
. (3)

Thus the displacement current dominates in this high-frequency region and for ωp � ω � γ ,
ε̃ is essentially a large negative real number. Here we will use the empirical values
ε∞ = 5.7, ωp = 9.013 eV and γ = 0.018 eV.

In figure 2 we have plotted the photonic band structure for a square lattice of the resonators
of figure 1(b) and for p-polarized waves against the frequency. We have also included the
photonic band structure for a square lattice of solid silver columns as shown in figure 1(a). In
each case the unit-cell length a is 600 nm and the length b, which defines the filling fraction,
is 312 nm. For the resonators we have used Lc = 144 nm and dc = D = 24 nm. These band
structures were calculated using the transfer matrix method [8]. The scaled wavevector is the
quantity βa/π , where β is the Bloch wavevector for the infinite system. For comparison, we
have also included the free light dispersion on this scale. In the case of the solid columns
we find the familiar linear dispersion of wavevector with frequency up to a band gap due to
Bragg scattering in the crystal where ω � πc/a (not shown). Away from the position of the
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Figure 2. Photonic band structure for p polarization of a square lattice of the magnetic structures
(open circles) and for the solid silver columns (filled circles). The free light dispersion is the solid
line. The dimensions defining these structures are a = 600 nm, b = 312 nm, Lc = 144 nm and
dc = D = 24 nm.

resonance at ≈75 THz, the band structure of the nanostructured resonators is also characterized
by the same linear dispersion. Thus we can be confident that we are operating in the effective
medium regime for these structures.

As figure 2 demonstrates, a gap has been introduced into the dispersion relationship above
the position of the resonance where no propagating modes are allowed in the crystal. In an
effective medium picture the refractive index is therefore imaginary and hence either εe f f or
µe f f has a negative real part.

Since our filling fraction is not too large, we can make an estimate of the resonance
frequency for this structure by considering the geometrical inductance and capacitance of the
individual element. We take the geometrical inductance per unit length of the structure, Lg , to
be given by the area enclosed by the resonator: Lg = µ0(b − 2D)2. The capacitance per unit
length of the structure for series connection is given by C = ε0 Lc/2dc. Circuit theory then
predicts a resonance frequency ω0 = (LgC)−1/2 � 104 THz. Note that we have neglected
the contribution to the inductance of the structure provided by the electrons in the metal. A
simple model for the effective permeability of these structures which we present later will
demonstrate that consideration of the geometrical inductance of the structure alone leads us to
overestimate the resonance frequency.

3. Determination of the effective permeability

Our aim is to characterize the electromagnetic properties of the system in terms of an effective
permittivity, εeff , and permeability, µe f f . For homogeneous media, knowledge of the refractive
index n and wave impedance z allows us to find εe f f and µe f f using

εe f f = n/z and µe f f = nz. (4)
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Again using the transfer matrix method we can calculate the (complex) reflection and
transmission coefficients for waves normally incident on a slab of the crystal. Analytic
expressions for these quantities, assuming a homogeneous medium, can then be inverted to
determine n and z.

The complex transmission and reflection coefficients are given by

t−1 = [cos x − i cosh u sin x]eikds , (5)

and

r = −[it sinh u sin x]eikds , (6)

respectively, where x ≡ nkds and u ≡ log z, k = ω/c is the incident wavenumber and ds is
the width of the slab considered which we take to be the unit-cell length times the number of
cells in the propagation direction. Inverting these equations we find that

cos(nkds) = 1 − r2 + t2

2t
, (7)

and

z = α ±
√

α2 − 1, (8)

where

α = 1 + r2 − t2√
[1 − (r2 − t2)]2 − 4t2

. (9)

These equations define complex multi-branched functions, but additional knowledge of the
system and results for more than one thickness of sample can be used to determine the correct
values unambiguously [9].

In figure 3 we have plotted the reflectance (‘R’), transmittance (‘T’) and absorbance (‘A’),
for two and for four layers of the structure. These are also the numbers of layers which we use
to determine the refractive index and impedance of the structure. Note how the transmittance
is close to zero above the resonance for as little as two layers, indicating the strong attenuation
of the incident wave inside the crystal. As a consequence of the large surface area in each unit
cell, the absorbance is also relatively large near the resonance where the radiation is interacting
strongly with the structure.

The refractive index and impedance that we derived for the structure are given in figure 4.
As expected, the refractive index and impedance are both large near the resonance frequency,
and are primarily imaginary in the band-gap region.

The calculated effective permittivity and permeability are given in figure 5. We see that the
gap in the dispersion relationship plotted in figure 2 is due to an effective negative permeability.
Note the dispersion in the effective permittivity with frequency. Its form is similar to that which
was found in [7] with an anomalous negative sign of the imaginary part.

By increasing the capacitance in the structure we were able to confirm that this behaviour
is symptomatic of the finite wavevector and consequent coupling of the electric and magnetic
fields at the level of the unit cell. An increasing capacitance, for fixed unit-cell dimension and
filling fraction, increases the separation between the length scales defining the unit cell and
the free-space wavelength at the resonance frequency. We found that this results in a reduced
level of dispersion in the dielectric response of the crystal while leaving the magnetic response
essentially unchanged.
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Figure 3. Reflectance, transmittance and absorbance for two layers of the magnetic structure (top)
and four layers (bottom). The reflectance is the solid curve, the transmittance is the dashed curve
and the dotted curve is the absorbance in each case. The dimensions defining the magnetic structure
are as for figure 2.
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Figure 4. The calculated effective refractive index (left) and effective impedance (right) of the
magnetic structure. The solid curves are the real parts and the dashed curves are the imaginary
parts in each case. The dimensions defining the magnetic structure are as for figure 2.

4. Scaling of the magnetic response with the unit-cell dimension

We have demonstrated that, with suitable adaptations, the range of operation of the split-ring
resonators can be extended into the infrared region of the spectrum. An interesting question
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Figure 5. The calculated effective permittivity (left) and permeability (right) of the magnetic
structure. The solid curves are the real parts and the dashed curves are the imaginary parts in each
case. The dimensions defining the magnetic structure are as for figure 2.

Table 1. Scaled dimensions, in nanometres, of the magnetic structure of figure 1(b). The
corresponding effective permeability in each case is given in figure 6.

a b D Lc dc

600 312 24 144 24
300 156 12 72 12
150 78 6 36 6

to ask is whether we can push the frequency of operation into the near-infrared or even the
visible spectrum, simply by making the structures smaller in size. To answer this we took
the structure whose effective response functions are given in figure 5 and examined how the
response scales as the unit-cell dimension is reduced.

The results are given in figure 6 where we have plotted the effective permeability of the
structure for a unit-cell dimension a = 600 nm as before and for a = 300 and 150 nm.
Thus each of the dimensions defining the structure is halved as the unit cell becomes smaller.
Considering the structure as a series LC circuit containing the magnetic inductance and
capacitance alone, we would expect the resonance frequency to double each time the unit-
cell length is halved. However, we see that the scaling behaviour is very different and in fact
the resonances become closer together in frequency as a is decreased.

To explain the origin of this behaviour we can use a simple physical model to derive
an expression for the effective permeability of the crystal in the limit where the free-space
wavelength λ0 � R, the internal radius of the structure as shown in figure 7(a).

We apply a time-varying magnetic field Hext along the axis of the structure. Voltages will
be induced around its circumference according to ∇×E = −∂t Bint , where Bint is the magnetic
induction inside the structure. The displacement current per unit length is Jφ = d ∂t Dφ where
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Figure 6. Scaling of the effective permeability of the magnetic structure as the unit-cell dimension
and the dimensions of the structure are uniformly decreased. The labelling in each case gives the
unit-cell dimension a. The dimensions of each structure, in nanometres, are given in table 1. In
each case, the solid curves are the real parts and the dotted curves are the imaginary parts.
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Figure 7. (a) The circular metallic resonator which we consider for our model calculation of the
effective permeability. The internal radius of the structure is R; the thickness of the silver film is
d. As before, the capacitance in the structure is defined by a separation dc and a length Lc. (b) An
illustration of the induced displacement currents j and charges which give rise to the magnetic
response of the structure.

we have assumed that the thickness of the metal film is much less than the skin depth in the
metal, δ, which is ≈22 nm in the region of frequency considered here. Using the Ampère law
to relate the fields inside and outside of the structure, it is straightforward to show that

Hint

Hext
=

[
1 − ωµ0π R2

2π R
ωε0 ε̃d + 2dc

ωε0 Lc

]−1

. (10)

Now consider a square array of these structures in vacuum with filling fraction f . Since the
magnetic fields are everywhere parallel to the boundaries of the structure, the homogenization
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Table 2. Dimensions of the magnetic structure of figure 1(b), and the corresponding dimensions of
the circular structure of figure 7 which we use to calculate the effective permeability as plotted in
figure 8. All dimensions are in nanometres. The dimensions Lc and dc for both sets of structures
are given in table 1.

a b D R d

600 312 24 161.4 14.6
300 156 12 78.8 9.2
150 78 6 38.7 5.3

law gives for the effective permeability

Hext µ̃e f f = (1 − f )Hext + f Hint . (11)

Using equations (10) and (11) and assuming that ε̃ � −ω2
p/ω(ω + iγ ), we can write µ̃ef f in

the familiar resonant form of

µ̃e f f = 1 − f ′ω2

ω2 − ω′
0

2 + i�ω
, (12)

where

f ′ = Lg

Lg + Li
f, (13)

ω′
0

2 = (Lg + Li )
−1C−1, (14)

and

� = Li

Lg + Li
γ. (15)

In the above expressions Lg = µ0π R2 is the geometrical inductance of the structure. We see
that the resonance occurs at a lower frequency than that given by (LgC)−1/2 because of an
additional inductive impedance in the structure, Li = 2π R/ε0ω

2
pd , that arises from the finite

electron mass. This can be seen by examining the expression for the plasma frequency in the
bulk metal which determines the conductivity:

ω2
p = ne2

ε0me
. (16)

Thus on taking the limit me → 0, the imaginary part of the conductivity becomes infinite, in
which case Li → 0. The damping of the resonance according to this model is determined by
the relation between the two contributions to the inductance of the structure. As the dimensions
of the structure are reduced, that fraction of the energy of the displacement current associated
with the inertial mass of the electrons increases. For finite γ , dissipative losses in the metal
then increase.

In order to compare the predictions of our model with the results of transfer matrix
simulations given in figure 6 we use the same values of Lc and dc in each case. For the
internal radius, R, of the structure we set π(R + d)2 = b2 and, in order to reflect the fact that
the fields decay exponentially in the film, we also set d = ∫ D

0 exp(−z/δ) dz. The resulting
dimensions of the structure in each case are given in table 2. All dimensions are given in
nanometres.

The results are given in figure 8 where we see that, although the shift of the resonance
frequency to a lower value than that given by (LgC)−1/2 is not as dramatic, the model can
qualitatively predict the scaling behaviour that we observed in our transfer matrix calculations.
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Figure 8. The effective permeability, given by equation (12), of a medium consisting of a square
array of the model structures of figure 7. The solid curves are the real parts and the dotted curves
are the imaginary parts in each case. The labelling denotes the unit-cell length in nanometres which
we consider. The corresponding dimensions of each structure are given in table 2.

An important factor which is not accounted for in our analytic model is the effect of
multiple scattering within the metal film which can lead to increased absorption once d < δ.
Our original choice of D = 24 nm was therefore made in order to maximize the area internal
to the structure of figure 1(b) while keeping the additional losses due to multiple scattering
to a minimum. Also, as the metallic regions become structured on a smaller scale, the effect
of the surfaces will be to decrease the electron mean free path and thus increase the level of
absorption above the value for the bulk metal. For silver films the observed values of the
optical constants depart from their bulk values once the thickness is <20–30 nm [10].

If we therefore require that d > δ and that the damping of the resonance should be small,
we then require that R should be large in comparison to 2δ. These requirements suggest that in
order to increase the operating frequency of these structures we should reduce the capacitance
in the structure. This can be achieved by introducing more divisions around the circumference
of the ring. Because they are connected in series, the total capacitance is then reduced while
leaving the quality factor of the resonance essentially unaltered provided that dc 	 R. Unless
the separation dc is very small however, this procedure will result in the unit-cell dimension
and the free-space wavelength at the resonance frequency becoming comparable. In this limit
we can no longer consider the crystal as an effectively homogeneous medium.

A final interesting property of these structures is their ability to concentrate the electrostatic
energy of the incident field into the small volume between the plates of the capacitors in the
structure. This property suggests the potential for enhancing non-linear effects with these
structures and for making active structures with very small quantities of the non-linear material.

Following the reasoning outlined in [1] we can arrive at a measure of the enhancement of
the energy density in the region between the plates of the capacitors. The electric field in these
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Figure 9. The enhancement of the electrostatic energy density within the gaps in the metallic ring
of figure 7 for two values of the separation dc as indicated.

regions is Ec = Vc/dc where the voltage across each capacitor, Vc, is given by

Vc = iddc

ωε0 Lc
jφ. (17)

Evaluating at the resonance frequency we obtain

|Ec| = Rd

2ε0 Lcδ2γ
|Hext |. (18)

We now assume that the electrostatic energy in the incident field is concentrated in the
capacitative regions of the structure. This in turn is related to the incident magnetic energy
density. Thus our enhancement factor, Q, for the electrostatic energy density is given by

2Q = (1/2)ε0|Ec(ω0)|2
(1/2)µ0|Hext (ω0)|2 (19)

Q = c2
0

8

(
Rd

Lcδ2γ

)2

, (20)

where the factor of two arises because the energy is shared between the two capacitative regions
in the structure. In figure 9 we have plotted the logarithm of the enhancement factor against
the frequency for two configurations of the structure of figure 7(a). The dimensions R and d
are the same in each case, being 161.4 and 14.6 nm respectively. The total capacitance is also
the same in each case, the ratio Lc:dc being 144:24 and 48:8 as indicated.

It is evident that these structures have considerable potential for enhancing non-linear
effects and for doing so very efficiently. Although the effective permeability calculated using
the model is greater than that calculated using the transfer matrix, we can still expect an
enhancement in the region of five orders of magnitude provided that the separation dc is
small enough. These levels of enhancement are comparable to those implied by studies of
the surface-enhanced Raman scattering for molecules adsorbed on rough surfaces of noble
metals [11].
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One might expect that because, at the position of the resonance frequency, the peak energies
contained in the electrostatic field and in the magnetic field are equal, we should also measure
a large dielectric response in the vicinity of the resonance. We found that the key to observing
a large magnetic response but a limited dielectric response is to structure the resonator such
that the large induced dipole fields screen one another. Examining figure 7(b) it is clear that
the induced current distribution is dipolar and thus the averaged magnetic response dominates
over the averaged dielectric response which has an underlying quadrupolar symmetry.

Finally, note that this structure displays a magnetic response only when the incident
magnetic field is oriented along the axis of the column. For the opposite polarization the
electric field will see a continuous conducting path and the crystal will respond in the manner
of an effective metal. Thus, creating an isotropic structure would require that we employ planar
elements and orient them along all three Cartesian axes. Fabrication of a three-dimensional
structure such as this and at submicron scales would represent a very considerable technological
challenge.

5. Conclusions

Numerical calculations of the effective permittivity and permeability have been presented for
a photonic crystal composed of metallic resonators structured on a nanometric scale. On
incorporating a large capacitance and inductance into the structure, the free-space wavelength
at the resonance frequency was much larger than the unit-cell dimension and thus the crystal
responded in the manner of a homogeneous system with a strongly dispersive magnetic
permeability near the resonance frequency. The permeability was found to be negative above
the resonance frequency. The smaller level of dispersion in the effective permittivity of the
structure was found to be reduced by increasing the separation between the length scales
defining the unit cell and the free-space wavelength. A physical model for the effective
permeability of the crystal was also derived. This model demonstrates that the inertial
inductance of the electrons in the metal represents a barrier to the operation of these structures as
effective media in the optical region of the spectrum. We have also shown that these structures
provide a means of concentrating the electromagnetic energy of the incident field into very
small volumes within the structure. This raises the possibility of creating active structures with
very small quantities of non-linear material.
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